1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
//! Futures and Promises //! ==================== //! //! Quick example: //! //! ``` //! # use ::promising_future::future_promise; //! # use std::time::Duration; //! # #[allow(unused_variables)] //! # use std::thread; //! let (fut, prom) = future_promise(); //! //! // A time-consuming process //! thread::spawn(|| { thread::sleep(Duration::from_millis(100)); prom.set(123) }); //! //! // do something when the value is ready //! let fut = fut.then(|v| v + 1); //! //! // Wait for the final result //! assert_eq!(fut.value(), Some(124)); //! ``` //! //! This module implements a pair of concepts: `Future`s - a read-only placeholder for a variable //! whose value may not yet be known, and `Promise`s - a write-once container which sets the //! value. //! //! A `Future` may either be "resolved" or "unresolved". An unresolved `Future` still has a pending //! `Promise` for it. It becomes resolved once the `Promise` is complete. Once resolved, it will //! have a value if the `Promise` was fulfilled (ie, set a value), or no value if the `Promise` was //! unfulfilled (ie, dropped without setting a value). //! //! A `Promise` is either "pending" or "complete". A pending `Promise` is simply a live value of //! type `Promise<T>`. It can be fulfilled by setting a value, which consumes the Promise, //! completing it. Alternatively it can be completed unfulfilled by simply dropping the value //! without ever calling `set` on it. //! //! A `Future` can also be created already resolved (ie, not paired with a `Promise`). This is //! useful for lifting values into the `Promise`/`Future` domain. //! //! `Future`s may be chained in two ways. The most general way is with `callback`, which takes a //! `Future` and a function to act on the value when it becomes available. This function is called //! within the same context that completed the `Promise` so if the function blocks it will block //! that context. The callback is passed another `Promise` to take the return of the callback, which //! may be fulfilled or unfulfilled within the callback, or passed on somewhere else. //! //! Using `callback` directly can be a little cumbersome, so there are a couple of helpers. `then` //! simply calls a synchronous callback function and uses its return to fulfill the value. The //! function must be run within the `Promise` context, so it should probably be quick. //! //! Alternatively `chain` - like `then` - will take a function to act on the resolved future //! value. However, unlike `then` it runs it in its own thread, so it can be arbitrarily //! time-consuming. The variant `chain_with` allows the thread creation to be controlled, so that //! thread pools may be used, for example. //! //! Groups of `Future`s can be acted upon together. `all` takes an iterator of `Future<T>`s, and //! returns a `Future<Iterator<T>>`, so that its possible to wait for multiple Futures to be //! resolved. //! //! Similarly, `any` returns the first available value of an iterator of `Future`s, discarding all //! the other values. //! //! More generally, `FutureStream` provides a mechanism to wait on an arbitrary number of `Futures` //! and incrementally acquiring their values as they become available. //! //! If a `Future` is dropped while its corresponding `Promise` is still pending, then any value it //! does produce will be discarded. The `Promise` be queried with its `canceled` method to see if a //! corresponding `Future` still exists; if not, it may choose to abort some time-consuming process //! rather than have its output simply discarded. // Internal details // // A Future has a promise iff its Unresolved. A Future is either created resolved (`with_value`), // in which case it never has a Promise, or becomes resolved by the Promise, which is destroyed // in the process. A Promise can exist without a Future - for example, when a callback is set on // the Future, which consumes the Future while setting the callback in the Promise. // // A Future can also be owned by a FutureStream, which prevents any other call on it. Therefore // a Future in a FutureStream can't have a callback set on it. /// An implementation of `Spawner` that spawns threads from a `ThreadPool`. #[cfg(feature = "threadpool")] extern crate threadpool; use std::sync::{Mutex, Arc, Weak}; use std::mem; use std::fmt::{self, Formatter, Debug}; mod fnbox; mod spawner; mod util; mod futurestream; mod mailbox; mod cvmx; use fnbox::{FnBox, Thunk}; use mailbox::{mailbox, Mailbox, Post}; pub use spawner::{Spawner, ThreadSpawner}; pub use util::{any, all, all_with}; use futurestream::WaiterNotify; pub use futurestream::{FutureStream, FutureStreamIter, FutureStreamWaiter}; /// Result of calling `Future.poll()`. #[derive(Debug)] pub enum Pollresult<T: Send> { /// `Future` is not yet resolved; returns the `Future` for further use. Unresolved(Future<T>), /// `Future` has been resolved, and may or may not have a value. The `Future` has been consumed. Resolved(Option<T>), } #[derive(Debug)] enum FutureVal<T> { Empty, Val(T), Mailbox(Mailbox<T>), } /// An undetermined value. /// /// A `Future` represents an undetermined value. A corresponding `Promise` may set the value. /// /// It is typically created in a pair with a `Promise` using the function `future_promise()`. pub struct Future<T: Send> { // Value from Promise, either constant or from promise val: FutureVal<T>, // Back reference to Promise - if any - so that we can set a callback. promise: Option<Weak<Mutex<PromiseInner<T>>>>, callback: Option<Post<Thunk<'static, Option<T>>>>, } impl<T: Send> Future<T> { fn new(mail: Mailbox<T>, promise: &Arc<Mutex<PromiseInner<T>>>, callback: Post<Thunk<'static, Option<T>>>) -> Future<T> { Future { val: FutureVal::Mailbox(mail), promise: Some(Arc::downgrade(promise)), callback: Some(callback), } } /// Construct an already resolved `Future` with a value. It is equivalent to a `Future` whose /// `Promise` has already been fulfilled. /// /// ``` /// # use promising_future::{Future, Pollresult}; /// let fut = Future::with_value(123); /// match fut.poll() { /// Pollresult::Resolved(Some(123)) => println!("ok"), /// _ => panic!("unexpected result"), /// } /// ``` pub fn with_value(v: T) -> Future<T> { Future { val: FutureVal::Val(v), promise: None, callback: None, } } /// Construct a resolved `Future` which will never have a value; it is equivalent to a `Future` /// whose `Promise` completed unfulfilled. /// /// ``` /// # use promising_future::{Future, Pollresult}; /// let fut = Future::<i32>::never(); /// match fut.poll() { /// Pollresult::Resolved(None) => println!("ok"), /// _ => panic!("unexpected result"), /// } /// ``` pub fn never() -> Future<T> { Future { val: FutureVal::Empty, promise: None, callback: None, } } /// Test to see if the `Future` is resolved yet. /// /// It returns an `Pollresult`, which has two values: /// /// * `Unresolved(Future<T>)` - the `Future` is not yet resolved, so returns itself, or /// * `Resolved(Option<T>)` - the `Future` has been resolved, and may have a value. /// /// ``` /// # use promising_future::{Future, Pollresult}; /// # let fut = Future::with_value(123); /// match fut.poll() { /// Pollresult::Unresolved(fut) => println!("unresolved future {:?}", fut), /// Pollresult::Resolved(None) => println!("resolved, no value"), /// Pollresult::Resolved(Some(v)) => println!("resolved, value {}", v), /// } /// ``` pub fn poll(mut self) -> Pollresult<T> { use FutureVal::*; let val = mem::replace(&mut self.val, Empty); match val { Empty => Pollresult::Resolved(None), Val(v) => Pollresult::Resolved(Some(v)), Mailbox(mut mail) => { match mail.take() { Ok(None) => { self.val = Mailbox(mail); Pollresult::Unresolved(self) }, Ok(v@Some(_)) => Pollresult::Resolved(v), Err(_) => Pollresult::Resolved(None), } }, } } /// Block until the `Future` is resolved. /// /// If the `Future` is not yet resolved, it will block until the corresponding `Promise` is /// either fulfilled, or is completed unfulfilled. In the former case it will return `Some(v)`, /// otherwise `None`. /// /// If the `Future` is already resolved - ie, has no corresponding `Promise` - then it will /// return immediately without blocking. /// /// ``` /// # use promising_future::Future; /// # let fut = Future::with_value(123); /// match fut.value() { /// Some(v) => println!("has value {}", v), /// None => println!("no value"), /// } /// ``` pub fn value(self) -> Option<T> { use FutureVal::*; match self.val { Empty => None, Val(v) => Some(v), Mailbox(mail) => match mail.wait() { Ok(v) => Some(v), Err(_) => None, }, } } /// Chain two `Future`s. /// /// Asynchronously apply a function to the result of a `Future`, returning a new `Future` for /// that value. This may spawn a thread to block waiting for the first `Future` to complete. /// /// The function is passed an `Option`, which indicates whether the `Future` ever received a /// value. The function returns an `Option` so that the resulting `Future` can also be /// valueless. #[inline] pub fn chain<F, U>(self, func: F) -> Future<U> where F: FnOnce(Option<T>) -> Option<U> + Send + 'static, T: 'static, U: Send + 'static { self.chain_with(func, &ThreadSpawner) } /// As with `chain`, but pass a `Spawner` to control how the thread is created. pub fn chain_with<F, U, S>(self, func: F, spawner: &S) -> Future<U> where F: FnOnce(Option<T>) -> Option<U> + Send + 'static, T: 'static, U: Send + 'static, S: Spawner { let (f, p) = future_promise(); spawner.spawn(move || if let Some(r) = func(self.value()) { p.set(r) }); f } /// Set a synchronous callback to run in the Promise's context. /// /// When the `Future<T>` completes, call the function on the value /// (if any), returning a new value which appears in the returned /// `Future<U>`. /// /// The function is called within the `Promise`s context, and so /// will block the thread if it takes a long time. Because the /// callback returns a value, not a `Future` it cannot be /// async. See `callback` or `chain` for more general async ways /// to apply a function to a `Future`. /// /// ``` /// # use promising_future::future_promise; /// let (fut, prom) = future_promise(); /// /// let fut = fut.then_opt(|v| v.map(|v| v + 123)); /// prom.set(1); /// assert_eq!(fut.value(), Some(124)) /// ``` #[inline] pub fn then_opt<F, U>(self, func: F) -> Future<U> where F: FnOnce(Option<T>) -> Option<U> + Send + 'static, U: Send + 'static { self.callback(move |v, p| if let Some(r) = func(v) { p.set(r) }) } /// Set synchronous callback /// /// Simplest form of callback. This is only called if the promise /// is fulfilled, and may only allow a promise to be fulfilled. pub fn then<F, U>(self, func: F) -> Future<U> where F: FnOnce(T) -> U + Send + 'static, U: Send + 'static { self.then_opt(move |v| v.map(func)) } /// Set a callback to run in the `Promise`'s context. /// /// This function sets a general purpose callback which is called /// when a `Future` is resolved. It is called in the `Promise`'s /// context, so if it is long-running it will block whatever /// thread that is. (If the `Future` is already resolved, it is /// the calling thread.) /// /// The value passed to the callback is an `Option` - if it is /// `None` it means the promise was unfulfilled. /// /// The callback is passed a new `Promise<U>` which is paired with /// the `Future<U>` this function returns; the callback may either /// set a value on it, pass it somewhere else, or simply drop it /// leaving the promise unfulfilled. /// /// This is the most general form of a completion callback; see /// also `then` and `chain` for simpler interfaces which are often /// all that's needed. /// /// ``` /// # use promising_future::future_promise; /// let (fut, prom) = future_promise(); /// /// let fut = fut.callback(|v, p| { /// match v { /// None => (), // drop p /// Some(v) => p.set(v + 123), /// } /// }); /// prom.set(1); /// assert_eq!(fut.value(), Some(124)) /// ``` pub fn callback<F, U>(mut self, func: F) -> Future<U> where F: FnOnce(Option<T>, Promise<U>) + Send + 'static, U: Send + 'static { use FutureVal::*; let (fut, prom) = future_promise(); let func = move |val: Option<T>| func(val.into(), prom); match self.val { Empty => func(None), Val(v) => func(Some(v)), Mailbox(mut mail) => { // try posting func to other side let func = Box::new(func) as Box<FnBox<Option<T>> + Send>; let func = match mem::replace(&mut self.callback, None) { None => Some(func), Some(cb) => match cb.post(func) { Ok(_) => None, Err(func) => Some(func), }, }; if let Some(func) = func { // couldn't send it, handle locally match mail.take() { Err(_) => (), Ok(v) => func.call_box(From::from(v)), } } } }; fut } // Called from FutureStream to add it as our waiter. fn add_waiter(&self, notify: WaiterNotify) { let p = self.promise.as_ref().and_then(|p| p.upgrade()); match p { Some(mx) => { let mut lk = mx.lock().unwrap(); lk.set_waiter(notify); }, None => notify.notify(), // no future, notify now } } } impl<T: Send> From<Option<T>> for Future<T> { fn from(v: Option<T>) -> Future<T> { match v { None => Future::never(), Some(v) => Future::with_value(v), } } } /// Blocking iterator for the value of a `Future`. Returns either 0 or 1 values. pub struct FutureIter<T: Send>(Option<Future<T>>); impl<T: Send> IntoIterator for Future<T> { type Item = T; type IntoIter = FutureIter<T>; fn into_iter(self) -> Self::IntoIter { FutureIter(Some(self)) } } impl<T: Send> Iterator for FutureIter<T> { type Item = T; fn next(&mut self) -> Option<Self::Item> { match self.0.take() { None => None, Some(fut) => fut.value() } } } impl<T: Send + Debug> Debug for Future<T> { fn fmt(&self, f: &mut Formatter) -> fmt::Result { use FutureVal::*; let state = match self.val { Empty => "Empty".into(), Val(_) => "Val(_)".into(), Mailbox(ref mb) => format!("Mailbox({:?})", mb), }; write!(f, "Future {{ val: {}, }}", state) } } // Inner part of a Promise, which may also be weakly referenced by a Future. enum PromiseInner<T: Send> { Empty, // no content Future { // future which will receive a value future: Post<T>, waiter: Option<WaiterNotify>, }, } impl<T: Send> PromiseInner<T> { // Create a Promise which holds a weak reference to its Future. fn with_future(fut: Post<T>) -> PromiseInner<T> { PromiseInner::Future { future: fut, waiter: None } } // Someone wants to know when this Promise is fulfilled. fn set_waiter(&mut self, notify: WaiterNotify) { match self { &mut PromiseInner::Future { ref mut waiter, .. } => { assert!(waiter.is_none()); *waiter = Some(notify); }, _ => notify.notify(), // promise already set, just wake now } } fn canceled(&self) -> bool { match self { &PromiseInner::Empty => true, &PromiseInner::Future { ref future, .. } => future.isdead(), } } } impl<T: Send> Debug for PromiseInner<T> { fn fmt(&self, f: &mut Formatter) -> fmt::Result { match self { &PromiseInner::Empty => write!(f, "Empty"), &PromiseInner::Future { .. } => write!(f, "Future {{ .. }}"), } } } /// A box for resolving a `Future`. /// /// A `Promise` is a write-once box which corresponds with a `Future` and may be used to resolve it. /// /// A `Promise` is initially pending, and is completed once it is consumed, either by its `set` /// method, or by going out of scope. The former is "fulfilling" the `Promise`; the latter is /// leaving it "unfulfilled". /// /// It may only be created in a pair with a `Future` using the function `future_promise()`. pub struct Promise<T: Send> { inner: Arc<Mutex<PromiseInner<T>>>, cbmail: Mailbox<Thunk<'static, Option<T>>>, } impl<T: Send> Promise<T> { fn new(fut: Post<T>, cbmail: Mailbox<Thunk<'static, Option<T>>>) -> Promise<T> { Promise { inner: Arc::new(Mutex::new(PromiseInner::with_future(fut))), cbmail: cbmail, } } // Set the value on the inner promise fn set_inner(&mut self, v: Option<T>) { use PromiseInner::*; // check for an existing callback and use it if let Ok(Some(cb)) = self.cbmail.take() { cb.call_box(v.into()) } else { let mut inner = self.inner.lock().expect("inner lock"); match mem::replace(&mut *inner, Empty) { Future { future, waiter } => { if let Some(v) = v { let _ = future.post(v); // discard value if future is gone }; if let Some(notify) = waiter { notify.notify(); }; }, Empty => (), }; } } /// Fulfill the `Promise` by resolving the corresponding `Future` with a value. pub fn set(mut self, v: T) { self.set_inner(Some(v)) } /// Return true if the corresponding `Future` no longer exists, and so any value set would be /// discarded. /// /// ``` /// # use ::promising_future::future_promise; /// # use std::thread; /// # use std::mem; /// # struct State; impl State { fn new() -> State { State } fn perform_action(&mut self) -> Option<u32> { None } } /// let (fut, prom) = future_promise(); /// /// thread::spawn(move || { /// let mut s = State::new(); /// while !prom.canceled() { /// match s.perform_action() { /// None => (), /// Some(res) => { prom.set(res); break }, /// } /// } /// }); /// // ... /// mem::drop(fut); /// ``` pub fn canceled(&self) -> bool { self.inner.lock().unwrap().canceled() } } impl<T: Send> Drop for Promise<T> { fn drop(&mut self) { self.set_inner(None) } } impl<T: Send> Debug for Promise<T> { fn fmt(&self, f: &mut Formatter) -> fmt::Result { write!(f, "Promise({:?})", *self.inner.lock().unwrap()) } } /// Construct a `Future`/`Promise` pair. /// /// A `Future` represents a value which may not yet be known. A `Promise` is some process which will /// determine that value. This function produces a bound `Future`/`Promise` pair. If the `Promise` /// is dropped before the value is set, then the `Future` will never return a value. If the `Future` /// is dropped before fetching the value, or before the value is set, then the `Promise`'s value is /// lost. /// /// ``` /// # use promising_future::{Future, future_promise}; /// let (fut, prom) = future_promise::<i32>(); /// ``` pub fn future_promise<T: Send>() -> (Future<T>, Promise<T>) { let (mail, post) = mailbox(); let (cbmail, cbpost) = mailbox(); let p = Promise::new(post, cbmail); let f = Future::new(mail, &p.inner, cbpost); (f, p) }